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Abstract 

Background Natural herbs are frequently used to treat diseases or to relieve symptoms in many countries. Moreover, 
as their safety has been proven for a long time, they are considered as main sources of new drug development. How-
ever, in many cases, the herbs are still prescribed relying on ancient records and/or traditional practices without scien-
tific evidences. More importantly, the medicinal efficacy of the herbs has to be evaluated in the perspective of MCMT 
(multi-compound multi-target) effects, but most efforts focus on identifying and analyzing a single compound experi-
mentally. To overcome these hurdles, computational approaches which are based on the scientific evidences and are 
able to handle the MCMT effects are needed to predict the herb-disease associations.

Results In this study, we proposed a network-based in silico method to predict the herb-disease associations. 
To this end, we devised a new network-based measure, WACP (weighted average closest path length), which 
not only quantifies proximity between herb-related genes and disease-related genes but also considers compound 
compositions of each herb. As a result, we confirmed that our method successfully predicts the herb-disease asso-
ciations in the human protein interactome (AUROC = 0.777). In addition, we observed that our method is superior 
than the other simple network-based proximity measures (e.g. average shortest and closest path length). Additionally, 
we analyzed the associations between Brassica oleracea var. italica and its known associated diseases more specifically 
as case studies. Finally, based on the prediction results of the WACP, we suggested novel herb-disease pairs which are 
expected to have potential relations and their literature evidences.

Conclusions This method could be a promising solution to modernize the use of the natural herbs by providing 
the scientific evidences about the molecular associations between the herb-related genes targeted by multiple com-
pounds and the disease-related genes in the human protein interactome.
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Backgrounds
Natural herbs, which is one of the main sources of tradi-
tional medicine, have been used for a long time to treat 
diseases or to relieve symptoms along with the history of 
mankind [1–3]. Recently, the herbs are frequently used 
as traditional, alternative and complementary medicine 
(TCAM). For example, more than 50% of the popula-
tions in East Asian countries (China, the Philippines, 
Republic of Korea) are visited the TCAM provider in last 
12-month [4]. Not only in the eastern countries, but also 
in western countries, the traditional medicine is preva-
lently used. For instance, more than 80% of the popula-
tions are satisfied with the TCAM in Australia, Denmark, 
Slovenia, Spain, and Switzerland [4]. Moreover, the 
exports of the traditional medicine products from China 
to the United States and European countries amounted 
to $7.6 billion and $2 billion in 2010, respectively [3].

Meanwhile, as the safety of the natural herbs has been 
proven for a long time, they have been in the limelight 
as sources of new drug development. More than half of 
small molecule drugs approved by to the US Food and 
Drug Administration (FDA) between 1981 and 2019 are 
originated from the natural products [5]. Moreover, there 
are successful examples of modern medicine which are 
originated from the herbs [6]. For example, artemisinin 
is isolated from Artemisia annua which is the herb used 
in traditional Chinese medicine for hundreds of years 
and it has been used as one of leading antimalarial agents 
[7]. In addition, Arsenic trioxide, which is used as com-
mon ingredient of traditional Chinese medicine, is also 
approved by FDA for treatment of leukemia in 2000 [8].

Likewise, the role of the herbs is getting more impor-
tant in drug development. However, the herb-based drug 
discovery faces some hurdles. First of all, the herbs are 
still prescribed relying on ancient records and traditional 
practices, not verified efficacy or molecular mechanisms 
based on scientific evidences [9]. More importantly, the 
most notable characteristic of the herbs is multi-com-
pound multi-target (MCMT) effects, which refers that 
each herb contains multiple compounds and the com-
pounds could target multiple proteins. It is considered 
one of great advantages of the herbs because the bio-
logical systems achieve robustness through redundancy 
[10–13] and targeting multiple disease genes could 
strength the medicinal efficacy by perturbing the sys-
tems, rather than individual disease genes [14]. How-
ever, most attempts of the herb-based drug discovery still 
rely on identifying and analyzing the most active single 
compound [6, 9]. In addition, there is no effective way to 
evaluate the medicinal efficacy of multiple compounds 
experimentally [6, 9].

To overcome these hurdles, systems pharmacology 
could be a promising solution. Systems pharmacology 

arose to overcome the limitations of traditional drug 
design paradigm known as ‘one gene, one drug, one dis-
ease’ and it analyzes the therapeutic effects of multiple 
target genes based on network analysis [14]. Therefore, 
it could be a great tool to understand how the multiple 
compounds in each herb affect the biological systems 
enabling the modern medicine to handle the MCMT 
effect [9, 15–17]. In practice, it has been reported that 
systems pharmacology could be applicated in predicting 
pharmacological targets of the herbs [18–21], predicting 
indications of the herbal compounds [22–24], and pre-
dicting synergistic combination of the herbs [25, 26].

In this study, we developed a network-based in silico 
method to predict the herb-disease associations. To this 
end, we devised a new network-based measure, WACP 
(weighted average closest path length), which not only 
quantifies proximity between herb-related genes and 
disease-related genes but also consider compound com-
positions of each herb. We evaluated a prediction per-
formance of our method through AUROC score and 
we compared the prediction performance with the sim-
ple network-based proximity measures such as aver-
age shortest and closest path length. Besides the global 
approach which consider all herb-disease associations 
to evaluate the prediction performance, we measured 
the AUROC scores in individual herbs and diseases and 
explored the correlations between the AUROC scores 
and the number of known associated herbs or diseases. 
Additionally, we analyzed the associations between Bras-
sica oleracea var. italica and its known associated dis-
eases more specifically as case studies. Finally, based on 
the prediction results of the WACP, we suggested novel 
herb-disease pairs which are expected to have potential 
relations and their literature evidences.

Methods
Collecting disease‑related genes and herb‑related genes
We used CODA (Context-Oriented Directed Asso-
ciation) repository [27] to collect disease-related genes 
(Fig. 1a). Briefly, CODA is the repository that integrates 
biological associations of both molecular level entities 
and phenomic level entities with anatomical context. 
Among the various types of associations in the CODA 
repository, we collected 163,212 disease-gene associa-
tions of 3,467 diseases and 15,647 genes from the CODA 
repository, which are obtained from multiple databases 
such as CTD [28], DiseaseConnect [29] and EndoNet 
[30]. To obtain more reliable disease-gene associations, 
we manually chose the disease-gene associations that 
have the evidences in at least two databases and resulted 
in the 2,098 disease-gene associations within 335 diseases 
and 1,120 genes.
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To collect herb-related genes, we used COCONUT 
database (Compound Combination-Oriented Natu-
ral Product Database with Unified Terminology) [31] 
(Fig. 1a). Briefly, the COCONUT is an integrated data-
base of comprehensive information about natural prod-
ucts with unified and standardized terminology. We 
estimated the herb-related genes through compounds 
in each herb and their target genes. The COCONUT 
database contains 1,138,081 herb-compound asso-
ciations between 15,980 herbs and 52,453 compounds 
obtained from TCMID [32], KTKP (https:// www. korea 
ntk. com/ ktkp2 014/), TCM-ID [33], HerDing [34], 
CMAUP [35], NPASS [36], and FooDB (https:// foodb. 
ca/). Among them, we chose the 317,051 herb-com-
pound associations between 6,339 herbs and 26,342 
compounds which have the evidences in at least two 
databases.

Among the 26,342 compounds, we chose the 6,010 
compounds which have at least one functional and/or 
physical target genes based on compound-gene asso-
ciations existed in the COCONUT databases, which 
are obtained from the MATADOR [37], BindingDB 
[38], STITCH [39], ChEMBL [40], CTD [28], DCDB 
[41], and DrugBank [42] and the databases that we 
mentioned above for the herb-compound associations. 
Like other associations, we chose the compound-gene 
associations which have the evidence in at least two 
databases and it resulted in 100,847 compound-gene 
associations between 6,010 compounds and 10,227 
genes and we finally selected 5,737 herbs that contain 
at least one compound among these 6,010 compounds.

Constructing a human interactome network
We constructed human protein interactome using 
protein-protein interactions from the CODA reposi-
tory [27]. The CODA repository compiled the pro-
tein-protein interactions from several databases 
including BioGRID [43], KEGG [44] and EndoNet 
[30]. The 260,770 protein-protein interactions between 
17,224 proteins exist in the CODA repository, and we 
used the largest connected components of the interac-
tome for the following analysis, which is consisted of the 
260,750 interactions between 17,199 proteins (Fig. 1b).

Quantifying the herb‑disease associations using 
network‑based measures
For each herb i and disease k, we defined herb-related 
genes ( Hi) as the union set of the target genes of the com-
pounds contained in the corresponding herb and disease-
related genes ( Dk) as the set of disease genes associated 
with the corresponding disease. When the herb i has 
N herb-related genes and the disease k has M disease-
related genes, we defined each herb-related gene in Hi 
as hin and each disease-related gene in Dk as dkm , respec-
tively. Given this, we used three different network-based 
measures to quantify the associations between the 5,737 
herbs and 335 diseases; (i) ASP (average shortest path 
length), (ii) ACP (average closest path length), and (iii) 
WACP (weighted average closest path length).

 (i) The average shortest path length (ASP) is one of 
the most commonly used measures to quantify 
the proximity between nodes in networks [45]. In 
this study, we hypothesized that the more closely 
the herb-related genes locate to the disease-related 
genes, the stronger associations exist. Therefore, 
we measured the shortest path lengths between 
all herb-related genes and disease-related genes 
( spl(hin , dkm) ) in each herb-disease pair and aver-
aged it (Eq. 1). For example, the ASP between dis-
ease k and herb i shorter than that between disease 
k and herb j because the gene 7 related to the herb 
j ( hj7 ) is located farther from the three disease 
related genes ( dk1, dk2, dk3 ) and herb i is predicted 
as more associated with disease k (Fig. 1c-(i)).

 (ii) We also used the average closest path length (ACP) 
based on the hypothesis that each herb-related 
gene does not have to target all disease-related 
genes [46]. Therefore, it was defined as the aver-
aged shortest path length between the herb-related 
genes and their closest disease-related genes 
(Eq. 2). For example, like ASP, the herb i is predi-
cated as more associated with disease k than herb 
j in this measure because the gene 7 related to the 
herb j ( hj7 ) has longer closest path length, spl(hj7 , 
dk3) = 3 (Fig. 1c-(ii)).

 (iii) In addition to simple ASP and ACP, we hypoth-
esized that the more compounds perturb the tar-
get genes, the more associations will be. There-

Fig. 1 Method overview (a) We collected the disease-related genes of 335 diseases from the CODA repository and herb-related genes of 5,737 
herbs based on the herb-compound and the compound-gene associations from the COCONUT database. b We constructed a human interactome 
network using 260,750 protein-protein interactions between 17,199 genes obtained from the CODA repository. c We quantified the herb-disease 
associations using three different network-based measures in the human protein interactome, including average shortest and closest path length 
and weighted closest path length that we devised in this study. d We evaluated the performance of each network-based measure through AUROC 
scores using the known herb-disease pairs in the COCONUT database as gold-standard

(See figure on next page.)

https://www.koreantk.com/ktkp2014/
https://www.koreantk.com/ktkp2014/
https://foodb.ca/
https://foodb.ca/
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Fig. 1 (See legend on previous page.)
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fore, we devised the weighted average closest 
path length (WACP) to consider the compound 
compositions of the herbs. The inversed value of 
weight ( win ) which was defined as the number 
of compounds targeting each target gene ( hin ) in 
each herb is multiplied to the closest path length 
(Eq.  3) between the herb-related genes and dis-
ease-related genes in each herb-disease pair. We 
used inversed value of weight to coincide with the 
values of shortest path length of which smaller 
values indicate the closer associations. Unlike 
ASP and ACP, herb j is predicted as more associ-
ated with disease k than herb i because the gene 4 
is perturbed by a greater number of compounds 
in the herb j ( wj4 = 3 ) than the herb i ( wi4 = 2 ) 
(Fig. 1c-(iii)).

Likewise, the association of each herb-disease pair can 
be differed by which network-based measure is used and 
we quantified the associations of all herb-disease pairs 
using each measure. We used python library networkx 
(version 2.6.3) for overall network analysis.

Evaluating prediction performance
To evaluate the prediction performance of each network-
based measures (Fig. 1d), we obtained 12,208 herb-disease 
associations between the herbs and the diseases from 
COCONUT database [31], which are obtained from pub-
lic databases, such as TCMID [32], TCM-ID [33], KTKP 
(https:// www. korea ntk. com/ ktkp2 014/), BFN (https:// biofo 
od. or. kr), in-house text-mining and experiments. The pub-
lic databases mainly collected the herb-disease associations 
from the reputable traditional Chinese or Korean medicine 
books and the publications through text mining methods. 
These pairs are known as that each herb has therapeutic 
effects on the corresponding diseases and we used them 
as gold-standard answer set (Fig. 1d). To measure AUROC 
score, we ranked all herb-disease pair based on the values 
in each of network-based measures and regarded the herb-
disease pair as true positives if they exist in the gold-stand-
ard answer set. We used python scikit-learn (version 1.1.1) 
for calculating the AUROC scores.

(1)ASP(Hi,Dk) =

N
i=1

M
k=1 spl(hin, dkm)

N ×M

(2)ACP(Hi,Dk) =

∑N
i=1minm∈Mspl(hin, dkm)

N

(3)WACP(Hi ,Dk ) =

∑N
i=1

(

1

win

)

∗ (minm∈Mspl(hin, dkm))

N

Results
Predicting the herb‑disease associations
First of all, we explored the statistics of the disease-
related genes, the herb-related genes, and the human 
protein interactome which we collected from the CODA 
repository and the COCONUT database (Fig.  1a and 
b). The 335 diseases had 6.26 related genes on average 
(Fig. 2a). Each disease had at least two related genes and 
a maximum of 74 related genes. Meanwhile, the 5,737 
herbs contained 34.50 associated compounds on aver-
age and each of herb contained a minimum of 1 and a 
maximum of 838 associated compounds (Fig.  2b). In 
addition, we estimated the herb-related genes through 
the genes that targeted by each compound and the herbs 
had 924.39 related genes on average and each of herb had 
a minimum of 1 and a maximum of 8,189 related genes 
(Fig. 2c). Furthermore, we constructed the human protein 
interactome consisted of 260,770 protein-protein interac-
tions between 17,224 proteins. The average degree of the 
nodes was 30.32 and the minimum and maximum degree 
was 1 and 2,088 respectively (Fig. 2d). These results indi-
cate that most of diseases and herbs are associated with 
more than one gene and the associations between them 
have to be analyzed more comprehensively through net-
work analysis, rather than single gene-based approaches.

More importantly, to predict the herb-disease asso-
ciations in the human protein interactome, we devised 
a new network-based measure named weighted average 
closest path length (WACP) which weights the herb-
related genes by the number of compounds targeting 
each of them (Methods). We measured the WACP of all 
herb-disease pairs between 335 diseases and 5,737 herbs. 
The lower WACP value indicates the stronger associa-
tions and we ranked all herb-disease pairs based on their 
WACP values. Then, we evaluated the prediction perfor-
mance of the WACP through AUROC (area under the 
receiver operating characteristic) using the known herb-
disease associations obtained from the COCONUT data-
base as a gold-standard answer set (Fig. 1d). Additionally, 
we measure the proximity between all herb-disease pairs 
using average shortest path length (ASP) and average 
closest path length (ACP) which are the most frequently 
used network-based proximity measure to compare the 
prediction performance.

As a result, the WACP (AUROC = 0.777) was superior to 
the ASP (AUROC = 0.456) and the ACP (AUROC = 0.670) 
(Fig.  2e). The WACP also show improved AURPC 
scores (0.023) than the baseline AUPRC scores (12,208 
positive herb-disease pairs/1,921,225 all herb-disease 
pairs = 0.006), the ASP (AUPRC = 0.005) and the ACP 
(AUPRC = 0.011). This result indicates that considering 
the compound composition of each herb can improve 

https://www.koreantk.com/ktkp2014/
https://biofood.or.kr
https://biofood.or.kr
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the performance in the prediction of herb-disease asso-
ciations in the human protein interactome, compared to 
the simple network-based measures that only consider the 
proximity between the genes. More specifically, the large 
number of true positive pairs in the gold-standard answer 
set were recovered at highly conservative false-positive 
rate (FPR = 5%, recall = 30%) (Fig.  2f ). This prediction 
performance is notable because correct, but not discov-
ered yet, predictions would be considered false positive 
and it can significantly underestimate the prediction per-
formance. Taken together, we confirmed that the WACP 
successfully predict the herb-disease associations in the 
human protein interactome and they show better predic-
tion performance than the other network-based proximity 
measures.

Prediction performances in individual herbs and diseases
Besides the global approach that use all herb-disease pairs 
to evaluate the prediction performance, we measured the 
AUROC scores in individual herbs and diseases. Among 
the 5,737 herbs and the 335 diseases, we selected the 
2,041 herbs and the 192 diseases which have at least one 

associated disease and herb, respectively and we calcu-
lated AUROC scores in each herb and disease based on the 
WACP. As a result, we confirmed that the average AUROC 
scores of individual herbs and disease show similar predic-
tion performance with the global approach, 0.721 (Fig. 3a) 
and 0.711 (Fig. 3b), respectively. It was notable that 88.4% 
and 93.8% of the 2,041 herbs and the 192 diseases showed 
the better performance than random (AUROC = 0.5).

Furthermore, we explored whether the prediction 
performances of individual herbs and diseases are 
affected by the number of known disease and herb 
pairs. To this end, we measured Pearson correlation 
coefficients (PCC) between the AUROC scores of indi-
vidual herbs and diseases and the number of known 
disease and herb pairs. As shown in Fig.  3c, we con-
firmed that there is no significant correlation between 
the AUROC scores of individual herbs and the num-
ber of their known associated diseases (PCC = 0.011, 
p-value = 0.615). Similarly, there is no significant cor-
relation between the AUROC scores of individual dis-
eases and the number of their known associated herbs 
(PCC=-0.011, p-value = 0.881) (Fig. 3d).

Fig. 2 The statistics of the disease-related genes, the herb-related genes and the human protein interactome and the prediction performance 
of each network-based measures (AUROC). a The distribution of the number of related genes in the 335 diseases (b) The distribution of the number 
of associated compounds in the 5,737 herbs, c The distribution of the number of related genes in the 5,737 herbs (d) The distribution of the node 
degrees in the human protein interactome, e The ROC curve of each network-based proximity measures and (f ) The ROC curve of the WACP 
at highly conservative false-positive rate (FPR = 5%)
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Case study: Brassica oleracea var. italica
For case study, we the selected reliable herbs that show 
the AUROC scores larger than 0.9 and have at least three 
known associated diseases. In addition, we found that 
the threshold of WACP at highly conservative false-
positive rate (FPR = 5%) is 1.50 (Fig.  2f ). Therefore, we 
again selected the herbs of which all WACP with their 
known associated diseases are lower than the threshold. 
This resulted in four herbs: Gossypium, Glehnia littora-
lis, Citrus aurantiifolia, and Brassica oleracea var. italica 

(Table 1). Among them, we chose Brassica oleracea var. 
italica which has the largest number of known associated 
diseases (Malignant neoplasm of breast, Malignant neo-
plasm of prostate, Colorectal carcinoma and Cataract) 
for the case study.

More specifically, the four known associated diseases 
with Brassica oleracea var. italica had significantly lower 
WACP values than the other diseases (Rank-sum test, 
p-value = 0.004) (Fig. 4a) and its AUROC score was 0.923 
(Table 1; Fig. 4b). Meanwhile, it contains 324 associated 

Fig. 3 The distribution of AUROC scores in individual herbs and diseases. The AUROC scores of individual (a) herbs and (b) diseases are plotted 
using scatter plots. Each dot indicates the individual herbs and diseases and those that show higher AUROC scores than 0.5 were colored 
as orange. c The correlation between the AUROC scores of individual herbs and the number of their known associated diseases. (d) The correlation 
between the AUROC scores of individual disease and the number of their known associated herbs

Table 1 The known herb-disease pairs of the herbs that show reliable prediction performances

Herb Disease WACP AUROC

1 Gossypium Breast Carcinoma 1.188 0.983

2 Melanoma 1.266

3 Alzheimer’s disease 1.299

4 Glehnia littoralis Breast Carcinoma 1.205 0.959

5 Lung Adenocarcinoma 1.408

6 Obesity 1.410

7 Citrus aurantiifolia Breast Carcinoma 1.177 0.937

8 Obesity 1.393

9 Multiple Sclerosis 1.416

10 Brassica oleracea var. italica Malignant neoplasm of breast 1.144 0.923

11 Malignant neoplasm of prostate 1.213

12 Colorectal carcinoma 1.296

13 Cataract 1.469
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Fig. 4 Brassica oleracea var. italica for case study (a) The WACP distributions of the known associated diseases and the other diseases were plotted 
using box plots. b The ROC curve of Brassica oleracea var. italica. (c) The distribution of the number of compounds targeting each gene related 
to Brassica oleracea var. italica. The network plot of the genes related with Brassica oleracea var. italica and the genes related with (d) Malignant 
neoplasm of breast, e Malignant neoplasm of prostate, f Colorectal carcinoma and (g) Cataract. To avoid overcrowding, we include only top 5% 
genes related to Brassica oleracea var. italica according to their weight values in the WACP. They are colored as green and the node size indicates 
the weights. The disease related gens are colored as purple and the nodes in the intersections are colored as red
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compounds and these compounds are related with 6,212 
genes. Each gene related to Brassica oleracea var. italica 
is targeted by 3.14 compounds on average and the genes 
with high weights are targeted by at least 10 compounds 
(top 5%) (Fig. 4c).

It showed the lowest WACP values with Malignant 
neoplasm of breast and we observed that the genes with 
the high weights (top 5%), which means that they are tar-
geted by many compounds contained in Brassica oleracea 
var. italica, are also the related genes of Malignant neo-
plasm of breast, such as AKT1, BCL2, CTNNB1, CXCL2, 
ESR1, FOS, GSTP1 RELA, TERT and TP53 (Fig. 4d). Sim-
ilarly, we confirmed that the genes related to Malignant 
neoplasm of prostate (e.g. ESR1, ERS2 and TP53) (Fig. 4e) 
and Colorectal carcinoma (e.g. TP53) (Fig. 4f ) are directly 
targeted by many compounds in Brassica oleracea var. 
italica. Interestingly, even though there are no genes 
that are directly targeted by the genes related to Brassica 
oleracea var. italica, the WACP successfully discovered 
Cataract as the associated disease (Fig. 4g).

New herb‑disease association discovery
Based on the reliable prediction performances of the 
WACP, we suggested new herb-disease associations 
which are expected to have potential relations. To this 
end, we focused on the four herbs that we discovered in 
the previous section. For the discovery of new herb-dis-
ease association, we selected the diseases that show the 
lower WACP than the average WACP of the known asso-
ciated diseases in each herb. In addition, among them, we 
finally selected the disease of which AUROC score is bet-
ter than the average AUROC score of individual disease 
(average AUROC = 0.711, Fig. 3b). The new herb-disease 
associations are presented in Table 2.

For example, Brassica oleracea var. italica that is used 
for the case study in the previous section is expected to 
have potential associations on Lung neoplasm and skin 
neoplasm. Notably, the anti-cancer activity of Brassica 
oleracea var. italica has been reported in many studies 
[47], especially for Lung neoplasm [48, 49] and skin neo-
plasm [50, 51]. Similarly, we found literature evidences of 
the new herb-disease associations that we suggested in 
Table 2 and these pairs can be considered as new indica-
tions of the herbs along with follow-up studies.

Discussion
Based on the prediction results of the WACP, we sug-
gested the new herb-disease pairs which are expected 
to have potential associations and we found that most of 
them have literature evidences about their therapeutic 
effects. Even though all our suggestions were associated 

with the cancer, this might be resulted from a current 
hurdle of network biology research field that the prior 
knowledges are highly biased to the most actively studied 
diseases such as cancer [58]. If other diseases are further 
studied with the great manpower and research funding 
like cancer, the prior knowledge about herb- and disease-
related genes could be complemented and our method 
could find new associations between the herbs and more 
various diseases.

Furthermore, beyond discovering the herb-disease 
associations, it is our priority to discriminate agonistic 
or antagonistic effects of the herbs against the diseases 
in the near future and the use of activation/inhibition 
information between the compounds and genes could 
be a starting point. In addition, each gene could have tis-
sue-specific or cell type-specific interactions with other 
genes. For example, some transcription factors induce 
expression of certain genes only in the specific tissues 
[59]. Hence, applying tissue-specific or cell type-specific 
interactome which is related to the disease pathology 
enables our method to more precisely predict the herb-
disease associations. Lastly, we used the herb-disease 
associations obtained from the public databases and the 
text-mining tool as gold-standard answer set. More pre-
cisely curated herb-disease associations (e.g., herb-dis-
ease associations extracted from the text mining tool and 
validated through in-vitro and in-vivo experiment) could 
increase the reliability of our method.

Conclusions
In this study, we devised the new network-based net-
work proximity measure named as WACP, which is 
the average closest path length between the disease-
related genes and the herb-related genes which are 
weighted by the number of compounds targeting them 
in each herb. We demonstrated WACP is superior 
than the simple network-based proximity measures 

Table 2 Potential herb-phenotype associations of top 5 herbs 
showing highest AUROC scores

Herb Disease WACP Reference

1 Glehnia littoralis Prostatic Neoplasms 1.265  [52]

2 Skin Neoplasms 1.292  [52, 53]

3 Renal cell carcinoma 1.333  [52]

4 Citrus aurantifolia Lung Neoplasms 1.243  [54–57]

5 Prostatic Neoplasms 1.251  [54, 57]

6 Skin Neoplasms 1.274  [54]

7 Renal cell carcinoma 1.321  [54]

8 Brassica oleracea var. 
italica

Lung Neoplasm 1.204  [47–49]

9 Skin Neoplasms 1.238  [47, 50, 51]
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in the herb-phenotype association prediction. These 
results indicate that considering not only the proxim-
ity between the herb-related genes and the disease-
related genes but also the compound compositions of 
each herb can improve the performance in the herb-
disease association predictions in the human protein 
interactome.

In conclusion, we hope that our method could be a 
promising solution to modernize the use of the natu-
ral herbs by providing the scientific evidences through 
the molecular associations between the herb-related 
genes targeted by multiple compounds in each herb 
and the disease-related genes in the human protein 
interactome.
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